Caristi’s fixed point theorem and strong systems of arithmetic

David Fernández-Duque
Mathematics Department, Ghent University
David.FernandezDuque@UGent.be

Joint with Paul Shafer, Henry Towsner, and Keita Yokoyama.
Wormshop 2017
Moscow, Russia
Theorem (Banach, 1922)

Let \mathcal{X} be a complete metric space and $f : \mathcal{X} \to \mathcal{X}$ be a contraction; that is, there is $\rho < 1$ such that $d(f(x), f(y)) < \rho \cdot d(x, y)$ for all $x, y \in X$. Then, there is $x_\ast \in X$ such that $f(x_\ast) = x_\ast$.

Theorem (Brouwer, 1910)

Let D be a disk in \mathbb{R}^n and $f : D \to D$ be continuous. Then, there is $x_\ast \in X$ such that $f(x_\ast) = x_\ast$.
Fixed point theorems in analysis

Theorem (Banach, 1922)

Let \mathcal{X} be a complete metric space and $f : \mathcal{X} \to \mathcal{X}$ be a contraction; that is, there is $\rho < 1$ such that $d(f(x), f(y)) < \rho \cdot d(x, y)$ for all $x, y \in \mathcal{X}$. Then, there is $x_* \in \mathcal{X}$ such that $f(x_*) = x_*$.

Theorem (Brouwer, 1910)

Let D be a disk in \mathbb{R}^n and $f : D \to D$ be continuous. Then, there is $x_* \in X$ such that $f(x_*) = x_*$.

David Fernández-Duque

Caristi’s theorem and strong arithmetics

Wormshop ’17 2 / 16
Definition

A **Caristi system** is a triple (\mathcal{X}, V, f), where

- \mathcal{X} is a complete separable metric space,
- $V: \mathcal{X} \to \mathbb{R}_{\geq 0}$ is a lower semi-continuous function, and
- $f: \mathcal{X} \to \mathcal{X}$ is an arbitrary function,

such that

$$\forall x \in \mathcal{X} \left(d(x, f(x)) \leq V(x) - V(f(x)) \right).$$

Theorem (Caristi, 1976)

If (\mathcal{X}, V, f) is a Caristi system, then f has a fixed point.

- Henceforth, a **metric space** is a complete separable metric space.
- We call the V in a Caristi system a **potential**.
Proofs of Caristi’s theorem

1. Caristi’s proof (simplified by Chi Song Wong)
Proofs of Caristi’s theorem

1. Caristi’s proof (simplified by Chi Song Wong)

2. Proof by EVP.

Theorem (Ekeland, 1974)

Every lower semi-continuous function $V : X \to \mathbb{R}_{\geq 0}$ has a critical point, i.e. a point $x_\ast \in X$ such that

$$\forall y \in X \left(d(x_\ast, y) \leq V(x_\ast) - V(y) \rightarrow y = x_\ast \right)$$
The Big Five subsystems of second-order arithmetic

- **Two sorts:** natural numbers, sets of naturals.
- Real numbers, infinite trees, etc. can all be coded in SOA.
- All systems have Σ^0_1-induction, elementary arithmetical axioms.

\[\text{RCA}_0 \quad \text{Computable sets exist (}\Delta^0_1\text{ comprehension)} \]

\[\text{WKL}_0 \quad \text{RCA}_0 + \text{“every infinite binary tree has an infinite path”} \]

\[\text{ACA}_0 \quad \{n \in \mathbb{N} : \varphi(n)\} \text{ exists, } \varphi \text{ arithmetical} \]

\[\text{ATR}_0 \quad \text{Transfinite recursion for arithmetical formulas.} \]

\[\Pi^1_1-\text{CA}_0 \quad \{n \in \mathbb{N} : \forall X \subseteq \mathbb{N} \, \varphi(n, X)\} \text{ exists, } \varphi \text{ arithmetical} \]
The strength of continuous Caristi’s theorem

Theorem (F-D S T Y)

The following are equivalent over RCA₀.

1. ACA₀.
2. Caristi’s theorem for continuous functions.
3. Caristi’s theorem for continuous potentials and continuous functions.

Proof. (1 → 2). By EVP.
The strength of continuous Caristi’s theorem

Theorem (F-D S T Y)

The following are equivalent over RCA\(_0\).

1. ACA\(_0\).
2. Caristi’s theorem for continuous functions.
3. Caristi’s theorem for continuous potentials and continuous functions.

Proof. (1 \rightarrow 2). By EVP.

(3 \rightarrow 1). Use the fact that ACA\(_0\) is equivalent to the statement that every decreasing sequence of positive reals has an infimum.
Compactness and Caristi’s theorem

Theorem (F-D S T Y)

*For compact metric spaces X:

- Caristi for l.s.c. V and continuous f is equivalent to WKL_0.
- Caristi for continuous V and continuous f is equivalent to WKL_0.***
Compactness and Caristi’s theorem

Theorem (F-D S T Y)

For compact metric spaces \mathcal{X}:

- Caristi for l.s.c. V and continuous f is equivalent to WKL$_0$.
- Caristi for continuous V and continuous f is equivalent to WKL$_0$.

Baire functions:

- Continuous functions are Baire class 0
- ω-limits of Baire class $< \xi$ functions are Baire class ξ.
Compactness and Caristi’s theorem

Theorem (F-D S T Y)

For compact metric spaces \mathcal{X}:

- Caristi for l.s.c. V and continuous f is equivalent to WKL$_0$.
- Caristi for continuous V and continuous f is equivalent to WKL$_0$.

Baire functions:

- Continuous functions are Baire class 0
- ω-limits of Baire class $< \xi$ functions are Baire class ξ.

Theorem (F-D S T Y)

For compact metric spaces \mathcal{X}:

- Caristi for l.s.c. V and Baire class 1 f is equivalent to ACA$_0$.

Caristi vs. ATR\textsubscript{0}

Theorem (F-D S T Y)

Caristi for Baire class 1 functions $f : X \to X$ (with arbitrary X and l.s.c. V) implies ATR\textsubscript{0}.

<table>
<thead>
<tr>
<th>Facts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ϕ-TR := $\forall \prec \left(\text{WO}(\prec) \to \exists Z \forall \xi \forall n (n \in Z \iff \phi(n,Z \prec \xi)) \right)$</td>
</tr>
<tr>
<td>2. $\text{ATR}{0} \equiv \text{RCA}{0} + \Sigma_{0}^{1}$-TR</td>
</tr>
<tr>
<td>3. If ϕ is Σ_{0}^{1}, there is a sequence of trees $(T_{\xi}){\xi \in \mathbb{N}}$ such that any path g through $T{\xi}$ codes Z_{ξ}.</td>
</tr>
</tbody>
</table>
Theorem (F-D S T Y)

Caristi for Baire class 1 functions $f : X \to X$ (with arbitrary X and l.s.c. V) implies ATR$_0$.

Facts:

1. \(\varphi\text{-}TR := \forall \prec \left(WO(\prec) \rightarrow \exists Z \ \forall \xi \ \forall n \ (n \in Z_\xi \iff \varphi(n, Z_\prec \xi)) \right) \)
 - \(Z_\xi = \{ m \in \mathbb{N} : \langle m, \xi \rangle \in Z \} \),
 - \(Z_\prec \xi = \{ m \in \mathbb{N} : \exists \zeta < \xi \langle m, \zeta \rangle \in Z \} \).
Caristi vs. ATR$_0$

Theorem (F-D S T Y)

Caristi for Baire class 1 functions $f : \mathcal{X} \rightarrow \mathcal{X}$ (with arbitrary \mathcal{X} and l.s.c. V) implies ATR$_0$.

Facts:

1. φ-TR $:=$ $\forall \prec \left(WO(\prec) \rightarrow \exists Z \ \forall \xi \ \forall n \ (n \in Z_\xi \leftrightarrow \varphi(n, Z_{\prec\xi})) \right)$
 - $Z_\xi = \{ m \in \mathbb{N} : \langle m, \xi \rangle \in Z \}$,
 - $Z_{\prec\xi} = \{ m \in \mathbb{N} : \exists \zeta \prec \xi \langle m, \zeta \rangle \in Z \}$.

2. ATR$_0 \equiv$ RCA$_0 + \Sigma^0_1$-TR.
Caristi vs. ATR_0

Theorem (F-D S T Y)

Caristi for Baire class 1 functions $f : \mathcal{X} \to \mathcal{X}$ (with arbitrary \mathcal{X} and l.s.c. V) implies ATR_0.

Facts:

1. φ-$\text{TR} := \forall \prec (WO(\prec) \to \exists Z \ \forall \xi \ \forall n \ (n \in Z_\xi \iff \varphi(n, Z_\prec \xi)))$
 - $Z_\xi = \{m \in \mathbb{N} : \langle m, \xi \rangle \in Z\}$,
 - $Z_\prec \xi = \{m \in \mathbb{N} : \exists \zeta \prec \xi \langle m, \zeta \rangle \in Z\}$.

2. $\text{ATR}_0 \equiv \text{RCA}_0 + \Sigma^0_1$-$\text{TR}$.

3. If φ is Σ^0_1, there is a sequence of trees $(T_\xi)_{\xi \in \mathbb{N}}$ such that any path g through T_ξ codes Z_ξ.
Caristi for Baire class 1 F implies ATR_0.

Proof idea. Fix $(T_i)_{i<\omega}$. We define a Caristi system (\mathcal{X}, F, V) as follows.

- \mathcal{X} be the set of sequences of paths $(g_i)_{i<\omega}$.

- $F(\vec{g}) = \lim_{n \to \omega} F_n$, where $F_n(\vec{g})$ replaces g_ξ by an ‘n-approximation’ of the path through T_ξ, whenever:
 1. $g_\xi(n) \not\in T_\xi$, and
 2. $\xi < n$ is the \prec-minimum satisfying 1.

- $V(\vec{g}) = \sum \{2^{-n} : g_n$ is not a path through $T_i\}$.

This defines a Caristi system, whose fixed point $(g_i^*)_{i<\omega}$ such that each g_i^* is a path through T_i. \square
Leftmost paths

Theorem (Marcone)

Π^1_1-CA$_0$ is equivalent to the statement “every ill-founded tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ has a leftmost path.”

Definition (Towsner)

- The **transfinite leftmost path principle** states that if $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is ill-founded and α is a well-order, then there is a path f^* through T such that no path through T is both $\Sigma^T_\alpha f^*$ and to the left of f^*.

- TLPP_0 is RCA$_0$ plus the transfinite leftmost path principle.

TLPP_0 is strictly between ATR$_0$ and Π^1_1-CA$_0$.
Caristi’s fixed point theorem for Baire functions

Theorem (F-D S T Y)

Caristi for Baire functions \(f : \mathcal{X} \to \mathcal{X} \) (with arbitrary \(\mathcal{X} \) and l.s.c. \(V \)) is equivalent to TLPP\(_0\).

Thus in the general case:

- Caristi is equivalent to TLPP\(_0\)
- Ekeland is equivalent to \(\Pi^1_1\)-CA\(_0\)
Strength of Caristi’s proof

Recall: Caristi’s proof relies on uncountable Caristi sequences.

Definition

Fix a Caristi system \((X, V, f)\).

A Caristi sequence (from \(x_0\)) is a well-order \((L, \prec)\) and a sequence \((x_\ell : \ell \in L) \subseteq X\) such that

\[
\begin{align*}
 x_{\text{min} L} &= x_0 \\
 x_{S(\ell)} &= f(x_\ell) \\
 x_\ell &= \lim_{k<\ell} x_k \quad (\ell \in \text{Lim})
\end{align*}
\]
Maximal sequences

Call a Caristi sequence **proper** if the x_ℓ’s are all distinct.

Lemma (Maximal sequence principle)

Given a Caristi system (\mathcal{X}, V, f) with f arithmetical and $x_0 \in \mathcal{X}$, there is a proper Caristi sequence with no strict, proper extensions.
Maximal sequences

Call a Caristi sequence **proper** if the x_ℓ's are all distinct.

Lemma (Maximal sequence principle)

Given a Caristi system (X, V, f) with f arithmetical and $x_0 \in X$, there is a proper Caristi sequence with no strict, proper extensions.

Proof of Caristi’s theorem by MSP: Any maximal sequence must have a last element, which is a fixed point of f. □
The closed orbit principle

Closed orbit: If \((\mathcal{X}, f)\) is a dynamical system and \(x \in \mathcal{X}\), the closed orbit of \(x\) is the least topologically closed, \(f\)-closed set \(O^*\) such that \(x \in O^*\).
The closed orbit principle

Closed orbit: If \((\mathcal{X}, f)\) is a dynamical system and \(x \in \mathcal{X}\), the closed orbit of \(x\) is the least topologically closed, \(f\)-closed set \(O^*\) such that \(x \in O^*\).

Theorem (Banach fixed point theorem 2.0)

If \(\mathcal{X}\) is a metric space and \(f : \mathcal{X} \to \mathcal{X}\) is a contraction, then for any \(x \in \mathcal{X}\), the closed orbit of \(\mathcal{X}\) has a unique fixed point.
The closed orbit principle

Closed orbit: If \((\mathcal{X}, f)\) is a dynamical system and \(x \in \mathcal{X}\), the closed orbit of \(x\) is the least topologically closed, \(f\)-closed set \(O^*\) such that \(x \in O^*\).

Theorem (Banach fixed point theorem 2.0)

If \(\mathcal{X}\) is a metric space and \(f: \mathcal{X} \rightarrow \mathcal{X}\) is a contraction, then for any \(x \in \mathcal{X}\), the closed orbit of \(\mathcal{X}\) has a unique fixed point.

Lemma (Closed orbit principle)

For every Caristi system \((\mathcal{X}, V, f)\) with \(f\) arithmetical and every \(x_0 \in \mathcal{X}\), there is a \(\subseteq\)-least closed set \(O^*\) such that \(x_0 \in O^*\) and
\[
(\forall x \in \mathcal{X})(x \in O^* \rightarrow f(x) \in O^*).
\]
Inflationary fixed points

Definition

The **arithmetical inflationary fixed point scheme** is the scheme stating that if \(F : 2^\mathbb{N} \to 2^\mathbb{N} \) is arithmetical and

\[
\forall X \ (X \subseteq F(X)),
\]

then there is a w.o. \((L, \prec)\) with max and sets \((X_\alpha : \alpha \in L)\) such that

\[
\begin{align*}
X_{\min L} &= \emptyset \\
X_{S(\alpha)} &= F(X_\alpha) \\
X_\gamma &= \bigcup_{\alpha \prec \gamma} X_\alpha \quad (\gamma \in \text{Lim}) \\
F(X_{\max L}) &= X_{\max L}.
\end{align*}
\]

Stronger than \(\Pi^1_1\text{-CA}_0\): does not require \(X \subseteq Y \rightarrow F(X) \subseteq F(Y)\)
Theorem (F-D S T Y)

The arithmetical inflationary fixed point scheme

≡ *the maximal sequence principle*

≡ *the closed orbit principle*
Theorem (F-D S T Y)

The arithmetical inflationary fixed point scheme

≡ the maximal sequence principle

≡ the closed orbit principle

<table>
<thead>
<tr>
<th>\mathcal{X}</th>
<th>f</th>
<th>V</th>
<th>Caristi</th>
<th>Ekeland</th>
</tr>
</thead>
<tbody>
<tr>
<td>compact</td>
<td>continuous</td>
<td>continuous</td>
<td>WKL_0</td>
<td>WKL_0</td>
</tr>
<tr>
<td></td>
<td>l.s.c.</td>
<td>ACA_0</td>
<td></td>
<td>ACA_0</td>
</tr>
<tr>
<td>arbitrary</td>
<td>continuous</td>
<td>continuous</td>
<td>ACA_0</td>
<td>$\Pi^1_1\text{-CA}_0$</td>
</tr>
<tr>
<td></td>
<td>l.s.c.</td>
<td>TLPP_0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIN