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Logic R of relevant implication

Qor—vw

Q (p—=9) = ((x—=v) = (x =)
(= (= v) = (¢ = ¥)

(o= (W —=x) = @ —=(p—X)

(e AY) = o, (pAY) =

(e =) A (e —=x) = (= (P AY)
= (V)= (p V)

(e =N —=x) = ((pVY) = X)
(A (VX)) = ((pAP)VX)

(p = ~p) = ~p

(o = ~p) = (¥ = ~p)

@ ~p—yp

©60000000

Rules: Modus ponens and Adjunction
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FDE is a first degree fragment of R

@ (Variable Sharing Principle)

If ¢ — 1 is a theorem of R,
then ¢ and v have a common variable.

@ For —-free ¢ and v,
@ Fepe v iff o — 4 is a theorem of R
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N. Belnap. How a computer should think (1976)

B4 := ({T,F,N,B},A,V,~, {T,B})
B3 := ({T,F,N}, A, Vv, —, {T})
Elements of B4 are subsets of {0,1}:
T={1}, F={0}, N=0, B={0,1},

then matrix operations are operations on sets classical truth
values, eg.

{0,1} v {0} ={0,1},{0,1} v ={1},~{0,1} ={0,1}.

As a result we obtain lattice operations wrt truth ordering.
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B4 as a bilattice.

<t is the truth (logical) ordering and <y is the knowledge
(information) ordering

<t T
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B4 and First Degree Entailment

@ v Epa ¢ iffvv: Prop — {T,F,N,B} v(¢) <;v(v)
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B4 and First Degree Entailment

@ v Epa ¢ iffvv: Prop — {T,F,N,B} v(¢) <;v(v)

o [Dunn 76] ) FEDE ¥ iff ©® )234 Y
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FDE sequent calculus

@ Sequents: p -1

@ Axioms:
° phy
o pAYFp pAYEY
o pFeVYy YEeVY
o o ANV X)F(pAY) VX
© phrrp ok

© Rules:
oFY pEx ebEx YvEX pEY YEX
eFYAX eVyYkx kX
ot
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Adding weak implication: B4 as a twist-structure.

@ Represent elements S of B4 as characteristic functions of
subsets of {0, 1}, i.e., as pairs S = (a, b), where
a=1iffteSandb=1iff0 e S.
T=(1,0), F=(0,1), N=(0,0), B=(1,1).
@ Matrix operations of B4 as twist-operations:
(a,b)V(c,d)=(ave,bad), (a,b)A(c,d)=(arc,bVvd),
~(a, b) = (b, a).
@ Implication operation on B4:
(a,b) = (c,d)=(a— c,and),

@ Add the constant L interpreted as F and consider Belnap’s
matrix in this extended language:

B4, := ({T,F,N,B},A,V,—, L,~,{T,B})
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Axiomatics of B4~ and B4

e B4~ = {p ]| Vv(v(p) € {T,B})}
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Axiomatics of B4~ and B4

e B4~ = {p ]| Vv(v(p) € {T,B})}

@ Hilbert style calculus for LB4™~

e Axioms for positive fragment of classical logic

e Strong negation axioms:

N1. ~(a = B) © aA~p N2. ~(a A B) & ~aV ~f
N3. ~~a < N4. ~(aV B) < ~a A ~p.
e Inference rule:
P a, a—f

B
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Axiomatics of B4~ and B4

e B4~ = {p ]| Vv(v(p) € {T,B})}

@ Hilbert style calculus for LB4™~

e Axioms for positive fragment of classical logic

e Strong negation axioms:

N1. ~(a = B) © aA~p N2. ~(a A B) & ~aV ~f
N3. ~~a < a N4. ~(a V B) <> ~a A ~f.
e Inference rule: 5
a, a—
Mp ———
B

e [B4 =[B4" +{L—p, p—>~L}
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Adding strong implication: Brady’s BN4

@ [Ross Brady 82] BN4 = LB4~,

where x = y = (X — y) V (~y — ~X).
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Adding strong implication: Brady’s BN4

@ [Ross Brady 82] BN4 = LB4~,
where x = y .= (x = ¥) V (~y — ~X).

“the most natural truth-functional conditional associated
with FDE” [B. Meier, J. Slaney]
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Adding strong implication: Brady’s BN4

@ [Ross Brady 82] BN4 = LB4~,
where x = y .= (x = ¥) V (~y — ~X).

“the most natural truth-functional conditional associated
with FDE” [B. Meier, J. Slaney]

@ Weak implication via strong implication [Arieli & Avron 96]

X—=>y=xx=X=y)Vy
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Adding strong implication: Brady’s BN4

@ [Ross Brady 82] BN4 = LB4~,
where x = y .= (x = ¥) V (~y — ~X).

“the most natural truth-functional conditional associated
with FDE” [B. Meier, J. Slaney]

@ Weak implication via strong implication [Arieli & Avron 96]

X—=>y=xx=X=y)Vy

@ Strong implication is substructural

X=X=>y)£x=>y
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Adding strong implication: Brady’s BN4

@ [Ross Brady 82] BN4 = LB4~,
where x = y .= (x = ¥) V (~y — ~X).

“the most natural truth-functional conditional associated
with FDE” [B. Meier, J. Slaney]

@ Weak implication via strong implication [Arieli & Avron 96]

X—=>y=xx=X=y)Vy

@ Strong implication is substructural

X=X=>y)£x=>y

e B3~ =k,
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Axiomatics of BN4

@ Axioms
p=p
(pAg)=p, (PANQ)=q
(p=a)A(p=r1))=(P=(qAT))
(pA(gVvr)=((pVva)A(pVr))
(p=q) = (~q= ~p)
~~p =P
~p=(pV(p= Q)
pVv~qV(p=q)
(p=p) = (~p= ~p))
pV((~p=p)=q)
(pV Q)= ~(~pA~q)

@ Rules

p,q p,p=4q p=q,r=t rvp,rv(p=q
PAQ’ g (g=n=FE=t rvaq
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From B3, B4, B4, to Nelson’s N3, N4, N4~

@ LB3” =LB4~ +{~p—(p—q)}
@ Axiomatics: replace

“Axioms for positive fragment of classical logic”
by
“Axioms for positive fragment of intuitionistic logic”

@ [IB37 =N3+{pV(p—q)},
[B47 =N4+{pVv(p—q)}
LB4T = N4+ + {pV (p— q)}
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Possible World Semantics for N3,N4, and N4+

@ N4-model is (W, <, V), where V : Prop x W — B4 and
w<w = V(p,w) <, V(p,w)
@ N3-modelis (W, <, V), where V : Prop x W — B3 and

w<w = V(p,w) <, V(p,w)
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Possible World Semantics for N3, N4, and N4+

V(e Vo, w) = V(e,w) Vv V(y,w)

V(e Nip,w) = Vip,w) A V(y,w)

V(~ o, w) = ~Vip,w)

1eVip—=y,w) iff YW >w (1 e V(ip,w)=1¢€eV(y,w))

0e V(g —p,w) iff 1€ V(p,w)and0e V(,w)

@ V(L,w)=Fincase of N4+
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Possible World Semantics for N3, N4 and N4+

o MEy iff 1eV(p,w) forall we W
o MwiET iff MwkEgepforallperl

o ENng ¢ iff VN4-model MVw (M, w =T = M, w E )
=ns @ iff VN3-model MYwW (M, w =T = M, w = )

@ N3, N4 and N4+ are strongly complete w.r.t. respective
classes of models
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Replacement in Nelson logics

@ Replacement rule fails for N3, N4, and N4+

oY
x(») < x(¥)
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Replacement in Nelson logics

@ Replacement rule fails for N3, N4, and N4+

oY
x(») < x(¥)

® ~ (¢ =) & (pA ~ 1)) € NA. Let x(p) =~ p.
(p =)« (~eVy) ¢ N4
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Replacement in Nelson logics

@ Replacement rule fails for N3, N4, and N4+
Y
x(e) < x(¥)
@ ~ (p = ¢) < (pA ~ 1)) € N4, Let x(p) =~ p.
(¢ =) < (~p V) ZN4

@ Positive replacement rule holds for Nelson logics

ey
x(#) < x(¥)’
where x(p) is ~-free
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Replacement in Nelson logics

@ Replacement rule fails for N3, N4, and N4+

oY
x(») < x(¥)

® ~ (¢ =) & (pA ~ 1)) € NA. Let x(p) =~ p.
(p =)« (~eVy) ¢ N4

@ Positive replacement rule holds for Nelson logics
gy
x(p) < x(¥)’

where x(p) is ~-free
@ Weak replacement rule holds for Nelson logics

P ~p o~
x(») < x(¥)
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The basic FDE-modal logic BK

@ Thelanguage L™ = {V,A,—, L,~,0,0}.

@ A BK-modelis atuple M = (W, R, V), where W is a set of
possible worlds, R C W? is an accessibility relation on W,
and V: Propx W — B4

@ V extends to non-modal formulas as follows:

V(e Vi, w) = V(p,w)V V(y,w);
V(e A, w) = V(p,w) A V(y,w);
V(e = ¥, w) = V(p,w) = V(v w);
V(~e, )—NV(% w);

V(L,w)=
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The basic FDE-modal logic BK

@ V extends to modal formulas according to [Fitting 91]:

o V(Op,w) = inf< {V(p,u) | wRu}

o V(Cp,w) =sup. {V(p,u)| wRu}
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Alternative presentation of BK-models

e M= (W,R, vt v™), where vt v~ : Prop — 2" are two
valuations. Given a BK-model M, we define verification
and falsification relations, =* and =", between worlds of
M and formulas of the language £™:
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Alternative presentation of BK-models

e M= (W,R, vt v-), where v, v~ : Prop — 2" are two
valuations. Given a BK-model M, we define verification
and falsification relations, =* and =", between worlds of
M and formulas of the language £™:

o MwETp & wevi(p); MwE"p & wev (p)

o MWwETpAY & (M,wET e and M,w =T 1)
MWE" oA & (MwE" ¢ or M,w =" 1)

o MwkET vy & Mwlkt g or M,wET )
MWE oV & (MwE" ¢ and M,w E~ )

OMWETp—=Y & MwETp=>MwET 1Y)
MwE =19 & MwETp and M,wE="9)
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Alternative presentation of BK-models

o Mwht L, MwgE— L

°M7W}:+N90
M, wET ~p

i3

M, wE" ¢
Mw =T @

i3

° M,w " Op
M, w =" Oe

(s

Vu(WwRu = M,u k=" @)
Ju(wRu and M, u =~ ¢)

s

3

o M,wET Op
M,w =" Op

Ju(wRu and M, u =" ¢)
Yu(wWRu = M,ukE=" y)

3
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BK-valid formulas

e M= (W,R,V)isaBK-model; ¢ is a formula.

ME ¢iff V(p,w) € {T,B} for all w € W iff
iff M =T pforallwe W
@ ¢ is BK-valid iff M E ¢ for every BK-model M
@ All tautologies of K are BK-valid.

@ The set of BK-valid formulas is not closed under the
replacement rule:

~(p— q) < (p A ~q) € BK, but
(b —q) < (~pVQq) ¢ BK

Sergei P. Odintsov FDE-Modalities



Logic BK

BK is the least set of formulas closed under the rules of
substitution, modus ponens and the monotonicity rules for both
modalities; and containing the following axioms:

@ axioms of classical propositional logic in the language
{\/7 /\7 %’ J‘}!
@ strong negation axioms:
~p & P; ~(pV q) < (~pA~Q);
~(PAQ) < (~pV~q); ~(p—q) < (PA~Q);
© modal axioms:
(OpADq) —O(pAQg); O(p— p);
ap & ~O~p; Op & ~O~p;
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Completeness theorem

@ BKiis strongly complete wrt the class of BK-models
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Analog of Gddel-Tarski translation

define a translation 7 from the language £~ = {V, A, —, L, ~}
of the logic N4+ to the language £™:

TP = 0Op T~p = ~Op
(V) = TpVTY T~(p V) = T AT
T(pAY) = TeATY T~(pAY) = TV T

(=) = OFp—=1Y) 7~(p—=1) = ToAT~Y

71 = 1 T~ = TP

T faithfully embeds N4+ into BS4, i.e., for any formula ¢ of the
language L,

o eN4t = 7o cBSA.
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Fisher Servi’s approach to defining modal logics

@ ¢ € Kiff STx(y) is a classical first order tautology.
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Fisher Servi’s approach to defining modal logics

@ ¢ € Kiff STx(y) is a classical first order tautology.

@ ¢ € FSiff STx(¢) € QInt [G. Fisher Servi 1984]
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Fisher Servi’s approach to defining modal logics

@ ¢ € Kiff STx(y) is a classical first order tautology.
@ ¢ € FSiff STx(¢) € QInt [G. Fisher Servi 1984]

@ o e BKFSiff STy () €
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Fisher Servi’s approach to defining modal logics

@ ¢ € Kiff STx(y) is a classical first order tautology.
@ ¢ € FSiff STx(¢) € QInt [G. Fisher Servi 1984]

@ ¢ € BKS iff ST, (y) < first order Belnap-Dunn logic
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First order Belnap-Dunn logic [Sano and Omori 2014]

o X ={R2, PPl . . P  }
@ M = (M, u*), where

p*(P) = (P+,P7)and P P C M;
p*(R) = (R*,R ) and R*,R~ C M2,
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First order Belnap-Dunn logic

M, s =+ Pi(x)
M. s =" Pi(x)
m,s = A(x,y)
M, s =" R(x,y)
MsETpAY
MsE" @AY
MsEr VY
MskE" VY
MsE"
MsE" =1
M, s T L

iff
iff
iff
iff
iff
iff
iff
iff
iff
iff

)GP,-+;

x) e P,
(s(x),s(y)) € B;
(s(x),s(y)) € R~

(M, s =T p and M, s =T ¥);
(M, s =" or M, s =" ¢);
(M, s =T or M, s =T 1);
(M, s =" ¢ and M, s =~ );
(M, sE=T =M sE"Y);
(M, s ET ¢ and M, s =~ ¥);
MsE" L
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First order Belnap-Dunn logic

M,s =t ~p  iff MskE o
MskE="~p iff Mskt o

M, s =" Vxp iff Vs(s'~*s =M s ET )
M, s == Vxp iff s ~*sand M, s’ =" ¢)

3s'(
M, s =T Ixp iff Is'(s ~*sand M, s’ =T »)
M, sk="Ixp iff V(s ~*s =M E= ).
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Standard translation ST,

STx(1) = 1, pj € Prop;

STx(pi) = Pi(x), pi € Prop;
STu(pANY) = STi(p) A STx(¥);
STx(pVv) = ST(p)V STk(¥);
STX(‘P — ¢) = STX(‘P) — STX(@D);
STx(~¢) = ~STk(¢);

STx(Dp) = Vy(R(x,y) = STy(¥));
STx(Cyp) = 3Jy(R(x,y) A STy(»)).

'To pass from ST (¢) to ST, () we simultaneously replace all occurences
of x by y and all occurences of y by x
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Fisher Servi style FDE-modal logic

@ ¢ € For(£™) is BK™S-valid if STy(¢) is a tautology of first
order Belnap-Dunn logic.

@ BK"-model is a BK-model with additional accessibility
relation M = (W, R, R, v ,v™)

@ Interpretation of &

M,w =T Op iff Ju(wRu and M, u =" );
Mow == Op iff Yu(wR'u = M,ukE" ).

@ ¢ is BKMS-valid iff ¢ is valid in every BKFS-model.
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Fisher Servi style FDE-modal logic

@ BK'™S is the least set of formulas closed under the rules of
substutition, modus ponens, and under the rules:

P ~o ~p — ~q

@ and containing the non-modal axioms of BK together with:
O(p—q) = (Op—0q), —~0p < O-r~p,

—-Op <> O-p and (~Op A ~Oq) — ~O(pV Q).

@ BKFS is strongly complete w.r.t. the class of BK™-models.
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Fisher Servi style FDE-modal logic

@ BKFS and the fusion BK @ BK have the same class of
models.
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Fisher Servi style FDE-modal logic

@ BKFS and the fusion BK @ BK have the same class of
models.

@ Are BK® and BK ® BK definitionally equivalent?
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Definitional equivalence of logics [Gyuris 99]

@ L4 and L, are propositional languages over Prop

@ 0: For(Lq) — For(L>) is a structural translation if for some
a:c’e L alc)(py,...,Pn) € For(L2):

0(p) =p, p € Prop; 0(c(e1,...,¢n)) =a(c)(0(v1),...,0(en)),

@ Ly and L, are definitionally equivalent via structural
translations 6 and p if:
@ ., ¢implies () 1, 8().

Q 1+, pimplies p(T) F1, p(p)-
© Forevery ¢ € For(£4) and v € For(L»),

@ < 2p0(p) € Ly and ¢ < 0p(¢) € La.

24 is a Tarski congrience for BK
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BK"

@ BK" is the ¢-free fragment of BK

@ BK" is the least set of £P- formulas closed under
substitution, MP, and (RN) £ and containing:

@ non-modal axioms of BK;

@ modal axioms:
d (p — q) — (DP — Dq) and ﬁNDp — Dﬁmp.

@ BK" and BK are definitially equivalent.
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Weakly structural translations

@ L4, Lo are propositional languages over Rrop, ~ € £1N L.

@ 0 : For(Ly) — For(L») is weakly structural if

0 | L4\ {~} is structural and for some
B:c™e Ly \{~} > B(C)(P1.q1...,Pn,dn) € For(Lz):

0(~p) = ~p, p € Prop;
Q(NC(QO'l ) 9017)) =
= B(c)(0(#1), 0(~p1), .-, 0(n), 0(~pn))-
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Weak definitional equivalence

Ly and L, are weakly definitionally equivalent via weakly
structural translations 6 and p if the following conditions hold.

@Q ForT U {¢} C For(L1), Ty, ¢ implies O(T) F, 6(p).
@ ForTU{p} C For(Lz), T+, pimplies p(I) 1, p(p)-
© Forevery ¢ € For(L¢) and ¢ € For(L»),

@ < pd(p) € Ly and ¢ < 0p(¢) € Lo.
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6 : For(L") — For(L™®)

@ 6 preserves propositional variables and constant 1,
commutes with connectives v, A, —, O, and

0(Op) = ~B~0(p).

@ For strongly negated formulas:
0(~p) = ~p, O(~L)=r~L, O0(~(eVV))=0(~p)NO(~V),

0(~(pA)) = O(~)VO(~1), B(~(p = 1)) = O(L)AO(~),
0(~Op) = ~O~0(~p), 0(~Op) = BI(~p).
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. For(£ ") — For(L")

@ p also preserves propositional variables and constant L
and commutes with connectives v, A, —, O.

@ For strongly negated formulas:
p(~p) = ~p, p(~L)=~L, p(~(pV)) = p(~p)Ap(~),
p(~(pAp)) = p(~p)Vp(~1), p(~( = ¥)) = p(p)Ap(~¥),

p(~0p) = ~O~p(~p), p(~Bp) = 2~Ormp(~p).

e BKS and BK" @ BK" are weakly definitionally equivalent
via 6 and p
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KN4 [Goble, 2006] based on BN4

o L0 ={V,A,=,~,0}.
@ BK"-models

° MwgET =1y iff (M,wpE" ¢implies M,w =T ) and
(M, w E~ ¢ implies M, w E~ ¢))
MwlE" =1y iff (M,wET e and M,w =~ ).
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HKN4, Hilbert style calculus for KN4

@ Non-modal axioms

Esomb):‘% (pAY) =
(e=V)A(p=x))= (¢= (W AX))
o= (pVY), v=_(oV)
(<P:>X)/\S¢=>X)):>((SOV¢):>X)
e NV X)) = ((eAY)V(eAX))
soz‘;w)i(lbiw)

NNSO

@ Modal axioms
K) DO(p=¢)= (Op= D)
C) (BpATY) = D(p A1)
Be) O(pV¢) = (~O~p Vv OY)
Nec) If ¢ is an axiom then so is Q.
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HKN4, rules

Adj) o V/eNY
MP) o p=v /Y
Prefix) o= /(x=¢)= (x =)
Suffix) o= /(¥ =x) = (¢»=X)

@ an infinite set XMP of extended modus ponens rules
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HKN4, extended modus ponens rules

@ MP*, o AN (g =1v) / (pA(p=1)) A, isin XMP

@ If arule ris in XMP, then so are all instances of Cr, Dr, Nr
and Mr.

@ Ifr=¢ /1, then:

Dr xVve/xVi
Cr xNe/xNy
Nr Oy /Oy
Mr g ) Oy
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Tableau for BK"-

@ N, +i @V, —i o=,
w7+l P, —1 ¢7_I %‘H va—i_l wa_l @7_1' 17/}7_‘_, va_i

b oo oo T
w, +1 ~pV N% +/ ~p N Nq/)?il wA N¢7il

Op,+i  Op,—i ~Op,+i  ~Op,—i
W ! i
\J irf irf \J
w,+J »,—J ~p,+/ ~p, _j
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Tableau for KN4
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Definitional equivalence

@ BK" is a L-free fragment of BK".

@ +: For(L£Z) — For(L"~) preserves propositional
variables, commutes with ~ O, A, Vv, and
e = ¥) = (v(e) = v(W)) A (v(~) = v(~)).

@ §: For(L"~) — For(LZ) preserves propositional
variables, commutes with ~ O, A, Vv, and

3(p = ) = (0() = (3() = 6(¢))) V 6(¢)-

@ KN4 and BK"~ are definitionally equivalent via v and 4.
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MBL, Modal Bilattice Logic [Jung, Rivieccio 2012]

@ LMBL— AV, ® @, —,~, 0 L T,bn}

@ In case of BK,

V(Op, w) = igf{ V(p,u) | wRu}

@ In case of MBL, both V and R are four-valued and

V(Op, w) = igf{WFu’u = V(p,u) | ue W},
>t

where ¢ = ¢ := (@ = ) A (~) = ~)
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MBL-validities

@ For MBL modality
M,w ET Op iff Vu(wRiu implies M,u =" ) and

Vu(wR_u implies M, u =~ ¢);
M,w " 0¢p iff Ju(wRiu and M,u =" ¢).

Sergei P. Odintsov FDE-Modalities



Embedding MBL~ into BK" @ BK"

¢ : For(L") — For(L"™) preserves propositional variables and
constants, commutes with the connectives A, v, —, and :

¢(~p) = ~p, C(~(e V) = C(~p) A((~1h),

C~(p AP)) = C(~p) V C(~), C(~(e — ) = (@) Ay(~v),
C(Bp) = 0¢(p) NB((=~p),  ((~Op) = ~O~((~p).

LetT U {x} C For(LMBL). T =y - x iff¢(F) ke xere ¢(X)-
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Thank You!

Thank You!
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