Natural axiomatic theories are well-ordered by consistency strength.

Ordinal analysis: assign recursive ordinals to theories as a measurement of their consistency strength.

Beklemishev’s method: iterate consistency statements over a base theory until you reach the Π^0_1 consequences of the target theory.

Why are natural theories amenable to such analysis?
Natural Turing degrees are well-ordered by Turing reducibility.

\(0, 0′, \ldots, 0^\omega, \ldots, \emptyset, \ldots, 0^\# \ldots\)

Martin’s Conjecture: (AD) The non-constant degree invariant functions are pre-well-ordered by the relation

\[\text{“} f(a) \leq_T g(a) \text{ for all } a \text{ in a cone of Turing degrees.} \text{”} \]

Moreover, the successor for this pre-well-ordering is induced by the Turing jump.
Our base theory is *elementary arithmetic*, EA, a subsystem of arithmetic just strong enough for usual arithmetization of syntax.

We focus on recursive functions f that are *monotonic*, i.e.,

$$\text{if } EA \vdash \varphi \rightarrow \psi, \text{ then } EA \vdash f(\varphi) \rightarrow f(\psi).$$

Our goal is to show that $\varphi \mapsto (\varphi \land Con(\varphi))$ and its iterates are canonical monotonic functions.
Some notation

We write $\varphi \vdash \psi$ when $EA \vdash \varphi \rightarrow \psi$ and say that φ implies ψ.

We say that φ strictly implies ψ if
(i) $\varphi \vdash \psi$ and
(ii) either $\psi \not\vdash \varphi$ or $\psi \vdash \bot$.

We write $[\varphi] = [\psi]$ if $\varphi \vdash \psi$ and $\psi \vdash \varphi$.
Theorem (Montalbán–W.)

Let f be monotonic. Suppose that for all φ,
(i) $\varphi \land \text{Con}(\varphi)$ implies $f(\varphi)$,
(ii) $f(\varphi)$ strictly implies φ.

Then for cofinally many true sentences φ,

$$EA \vdash f(\varphi) \iff (\varphi \land \text{Con}(\varphi)).$$

Corollary

There is no monotonic f such that for every φ,
(i) $\varphi \land \text{Con}(\varphi)$ strictly implies $f(\varphi)$ and
(ii) $f(\varphi)$ strictly implies φ.
Monotonicity is essential

Can we weaken the condition of *monotonicity*, i.e.,

\[\text{if } EA \vdash \varphi \rightarrow \psi, \text{ then } EA \vdash f(\varphi) \rightarrow f(\psi), \]

to the condition of *extensionality*, i.e.,

\[\text{if } EA \vdash \varphi \leftrightarrow \psi, \text{ then } EA \vdash f(\varphi) \leftrightarrow f(\psi)? \]

Theorem (Shavrukov–Visser)

There is an extensional \(f \) *such that for all* \(\varphi \),

(i) \(\varphi \land \text{Con}(\varphi) \) *strictly implies* \(f(\varphi) \) *and*

(ii) \(f(\varphi) \) *strictly implies* \(\varphi \).
Theorem (Visser)

For all φ, $EA \vdash Con_{CF}(Con_{CF}(\varphi)) \leftrightarrow Con(\varphi)$.

However, for all φ that prove the cut-elimination theorem,

$$EA \vdash (\varphi \land Con(\varphi)) \leftrightarrow (\varphi \land Con_{CF}(\varphi)).$$

Similar considerations apply to the Friedman–Rathjen–Wiermann notion of *slow consistency*.

Question: Does the lattice of Π^0_1 sentences enjoy uniform monotonic density?
Given an elementary presentation of an ordinal α, we define the iterates of Con as follows.

\[
\text{Con}^0(\phi) := \top \\
\text{Con}^{\beta+1}(\phi) := \text{Con}(\phi \land \text{Con}^\beta(\phi)) \\
\text{Con}^\lambda(\phi) := \forall \beta < \lambda \text{Con}^\beta(\phi)
\]

N.B. $\text{Con}^1(\phi) = \text{Con}(\phi)$.
Theorem (Montalbán–W.)

Let f be monotonic. Suppose that for all φ,

(i) $\varphi \land \text{Con}^\alpha(\varphi)$ implies $f(\varphi)$,
(ii) $f(\varphi)$ strictly implies $\varphi \land \text{Con}^\beta(\varphi)$ for all $\beta < \alpha$.

Then for cofinally many true sentences φ,

$$EA \vdash f(\varphi) \iff (\varphi \land \text{Con}^\alpha(\varphi)).$$

Corollary

There is no monotonic f such that for every φ,

(i) $\varphi \land \text{Con}^\alpha(\varphi)$ strictly implies $f(\varphi)$ and
(ii) $f(\varphi)$ strictly implies $\varphi \land \text{Con}^\beta(\varphi)$ for all $\beta < \alpha$.
Iterates of Con are inevitable.

Theorem (Montalbán–W.)

Let f be a monotonic function such that for every φ,
(i) $\varphi \land \text{Con}^n(\varphi)$ implies $f(\varphi)$ and
(ii) $f(\varphi)$ implies φ.

Then for some φ and some $k \leq n$,

$$[f(\varphi)] = [\varphi \land \text{Con}^k(\varphi)] \neq [\bot].$$
The main theorem

Theorem (Montalbán–W.)

Suppose f is monotonic and, for all φ, $f(\varphi) \in \Pi^0_1$. Then either
(i) for some φ, $(\varphi \land \text{Con}^\alpha(\varphi)) \not\models f(\varphi)$ or
(ii) for some $\beta \leq \alpha$ and φ, $[\varphi \land f(\varphi)] = [\varphi \land \text{Con}^\beta(\varphi)] \neq [\bot]$.

The proof of this theorem involves Schmerl’s technique of reflexive induction in a seemingly essential way.
The main theorem

Theorem (Montalbán–W.)

Suppose f is monotonic and, for all φ, $f(\varphi) \in \Pi^0_1$. Then either
(i) for some φ, $(\varphi \land \text{Con}^\alpha(\varphi)) \nvdash f(\varphi)$ or
(ii) for some $\beta \leq \alpha$ and φ, $[\varphi \land f(\varphi)] = [\varphi \land \text{Con}^\beta(\varphi)] \neq [\bot]$.

The main theorem resembles the following theorem of Slaman and Steel.

Theorem (Slaman–Steel)

Suppose $f : 2^\omega \rightarrow 2^\omega$ is Borel, order-preserving with respect to \leq_T, and increasing on a cone. Then for any $\alpha < \omega_1$, either
(i) $(x^{(\alpha)} <_T f(x))$ on a cone or
(ii) for some $\beta \leq \alpha$, $f(x) \equiv_T x^{(\beta)}$ on a cone.
The main theorem

Theorem (Montalbán–W.)

Suppose f is monotonic and, for all φ, $f(\varphi) \in \Pi_1^0$. Then either (i) for some φ, $(\varphi \land \text{Con}^\alpha(\varphi)) \not\models f(\varphi)$ or (ii) for some $\beta \leq \alpha$ and φ, $[\varphi \land f(\varphi)] = [\varphi \land \text{Con}^\beta(\varphi)] \neq [\bot]$.

Question: In case (ii), can we find a true φ such that $[\varphi \land f(\varphi)] = [\varphi \land \text{Con}^\beta(\varphi)]$?
Recall: \(\varphi \) is \(1\text{-consistent} \) if \(\text{EA} + \varphi \) is consistent with the true \(\Pi^0_1 \) theory of arithmetic.

\(1\text{Con} \) is a \(\Pi^0_2 \) analogue of consistency.

Recall: \(1\text{Con}(\top) \) is \(\Pi^0_1 \) conservative over \(\{ \text{Con}^k(\top) : k < \omega \} \).

Such conservativity results are drastically violated in the limit.

If \(\varphi \) implies \(\Pi^0_1 \) transfinite induction along \(\alpha \), then \((\varphi \land 1\text{Con}(\varphi)) \) strictly implies \((\varphi \land \text{Con}^\alpha(\varphi)) \).

Is \(1\text{Con} \) the weakest such function?
The *Harrison linear order* \mathcal{H} is a recursive linear order with no hyperarithmetic descending sequences.

$$\mathcal{H} \cong \omega_1^{CK} \times (1 + \mathbb{Q})$$

Thus, \mathcal{H} provides a notation to each recursive ordinal.

Using Gödel’s fixed point lemma, we can iterate Con along \mathcal{H}.
We say that f majorizes g if there is a true φ such that whenever $\psi \vdash \varphi$ then $f(\psi)$ strictly implies $g(\psi)$.

Theorem (Montalbán–W.)

For every non-standard $\alpha \in \mathcal{H}$ and standard $\beta \in \mathcal{H}$,

(i) $\varphi \mapsto (\varphi \land \text{Con}^\alpha(\varphi))$ majorizes $\varphi \mapsto (\varphi \land \text{Con}^\beta(\varphi))$ but

(ii) $\varphi \mapsto (\varphi \land \text{1Con}(\varphi))$ majorizes $\varphi \mapsto (\varphi \land \text{Con}^\alpha(\varphi))$.

James Walsh

On the inevitability of the consistency operator
We would like to strengthen our positive results by changing *cofinally* to *in the limit*.

Let \(f \) be recursive and monotonic. Suppose that for all \(\varphi \)

(i) \(\varphi \land \text{Con}(\varphi) \) implies \(f(\varphi) \) and
(ii) \(f(\varphi) \) implies \(\varphi \).

Question: Must \(f \) be equivalent to the identity or to \(\text{Con} \) on a true ideal?

Question: Is the relation of cofinal agreement on true sentences an equivalence relation on recursive monotonic operators?
Thanks!

Proof-theoretic analysis by iterated reflection.
Archive for Mathematical Logic. vol. 42, no. 6.

A. Montalbán and J. Walsh (2017)
On the inevitability of the consistency operator.
arXiv.

V. Shavrukov and A. Visser (2014)
Uniform density in Lindenbaum algebras.
Notre Dame Journal of Formal Logic. vol. 55, no. 4.

T. Slaman and J. Steel (1988)
Definable functions on degrees.
Cabal Seminar. 81–85, p. 37–55

A. Visser (1990)
Interpretability logic.